
© Copyright Ian D. Romanick 2008

13-May-2008

VGP353 – Week 7

⇨ Agenda:
­ Quiz #3
­ Generating shadow volume geometry

­ Side-trip into mesh data structures
­ Using a real mesh data structure to generate the shadow 

volume geometry

­ Assignments...



© Copyright Ian D. Romanick 2008

13-May-2008

Shadow Volume Geometry

⇨ Generating shadow volume geometry directly 
from raw vertex data is hard

­ Clearly some data structure is needed to make the 
work easier

⇨ What features must this data structure have?



© Copyright Ian D. Romanick 2008

13-May-2008

Shadow Volume Geometry

⇨ Generating shadow volume geometry directly 
from raw vertex data is hard

­ Clearly some data structure is needed to make the 
work easier

⇨ What features must this data structure have?
­ Iterate over each edge in the mesh exactly once
­ Access to each polygon sharing an edge
­ Access to neighboring edges in each polygon

­ This is so that normals can be calculated

⇨ Does such a magical data structure exist?



© Copyright Ian D. Romanick 2008

13-May-2008

Winged-Edge Mesh

⇨ The original mesh structure to store connectivity 
information

⇨ As the name implies, the focus is the edge
­ Each vertex stores a pointer to one of the edges 

“radiating” from it
­ Each polygon stores a pointer to one of its edges
­ Each edge has 8 pointers:

­ Pointers to each of its vertices (2)
­ Pointers to each of its polygons (2)
­ Pointers to each of its connecting edges (4)



© Copyright Ian D. Romanick 2008

13-May-2008

Winged-Edge Mesh

f
0

f
1

e

e
0

+ e
1

-

e
0

- e
1

+

Counter-clockwise edges are +

Clockwise edges are -



© Copyright Ian D. Romanick 2008

13-May-2008

Winged-Edge Mesh

⇨ Desirable mesh representation properties:
­ Ease of manipulation: adding and removing data 

should not be too expensive
­ Scalability: May want to trade data size for 

performance per the needs of the application



© Copyright Ian D. Romanick 2008

13-May-2008

Winged-Edge Mesh

⇨ Desirable mesh representation properties:
­ Ease of manipulation: adding and removing data 

should not be too expensive
­ Scalability: May want to trade data size for 

performance per the needs of the application

✫ Base winged-edge lacks the 
ability to iterate over the 
edges

✫ Base winged-edge has a lot 
of extra pointers that we will 
never use

✫ Several common types of 
updates on WE meshes are 
really complicated to 
implement correctly



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ Slight modification of winged-edge mesh:
­ Half-edge (HE) structures replace (full) edges
­ Each HE stores 4 pointers:

­ Pointer to starting vertex (1)
­ Pointer to polygon (1)
­ Pointer to counter-clockwise neighbor HE on the same poly-

gon (1)
­ The “opposite” HE (1)

­ I call this the sibling edge

­ Other references call it symmetric edge or pair edge



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

f
0

f
1



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

struct half_edge {
    // Pointer to next counter-clockwise edge on same
    // polygon
    struct half_edge *next_ccw;

    // Pointer to matching edge on different polygon
    struct half_edge *sibling;

    // Pointer to the owning polygon
    struct polygon *p;

    // Pointer to next edge in global mesh edge list
    struct half_edge *next;

    // Pointer to starting vertex
    struct vertex *v;
};



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ If each HE only stores one vertex pointer, how 
do we get the other end?



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ If each HE only stores one vertex pointer, how 
do we get the other end?

­ The sibling edge stores a pointer to the other vertex
­ e->v and e->sibling->v make up the complete 

edge



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

struct vertex {
    // Pointer an edge leaving this vertex
    struct half_edge *edge;

    // Pointer to position data for this vertex
    Vectormath::Aos::Vector4 *v;
};



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ Given a vertex structure, how can we iterate all 
the edges that share that vertex?

half_edge *e = v->edge;
do {
    // Do real work here.

    // Iterate to next edge
    e = e->sibling->next_ccw;
} while (e != v->edge);



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

f
0

f
1

e

v



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

f
0

f
1

e->sibling

v



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

f
0

f
1

e->sibling->next

v



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ What's the problem?

f
0

f
1

e

v



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ What's the problem?
­ The new e doesn't 

really have a sibling!
­ There are no pointers 

to follow to get the next 
edge

f
0

f
1

e

v



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ How can we add new 
edges to the mesh 
and prevent this 
problem? f

0
f
1

e

v



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ How can we add new 
edges to the mesh 
and prevent this 
problem?

­ As new polygons are 
created, the sibling 
edges are linked in a 
“fake” CCW ring

­ The polygon pointers of 
these HEs is NULL

­ Adding new edges is a 
matter of updating all 
the linked lists

f
0



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ To make the HE work, there are a few more 
primitives required

­ create_edge(v0, v1): Create a new pair of HEs 
between v0 and v1

­ make_adjacent(a, b): Link a and b so that        
a->next = b

­ add_polygon(edges, n): Create a new polygon 
from a list of existing edges



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ To create a new edge:
­ Allocate two HEs, link one to v0 and the other to v1
­ Set both polygon pointers to NULL
­ Link both HEs as siblings
­ Link both HEs as each other's next_ccw

­ Tricky!  This makes the bootstrap case work and fixes other 
issues in make_adjacent

­ Insert each edge in the “gap” in the vertex's edge list
­ Some HE where:

­ e->sibling->v == v

­ e->p == NULL

­ e->next_ccw->v == v



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ Edges can be added in arbitrary order...



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ Edges can be added in arbitrary order...



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ Edges can be added in arbitrary order...



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ Edges can be added in arbitrary order...



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ Edges can be added in arbitrary order...



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

­ This causes problems 
when edges are formed 
into a polygon

⇨ Edges can be added in arbitrary order...

These edges should be linked



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

­ Cut the links between in and 
in-next, and between out 
and out-previous

⇨ Relink the edges to create the correct 
relationships

in

out

out-previous

in-next



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

­ Cut the links between in and 
in-next, and between out 
and out-previous

­ Link in and out

⇨ Relink the edges to create the correct 
relationships

in

out

out-previous

in-next



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

­ Cut the links between in and 
in-next, and between out 
and out-previous

­ Link in and out

⇨ Relink the edges to create the correct 
relationships

in

out

out-previous

in-next

­ Find a free edge going into 
in and out's common vertex, 
call it g

­ This edge must be between out-sibling and in

g



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

­ Cut the links between in and 
in-next, and between out 
and out-previous

­ Link in and out

⇨ Relink the edges to create the correct 
relationships

in

out

out-previous

in-next

­ Find a free edge going into 
in and out's common vertex, 
call it g

­ This edge must be between out-sibling and in

­ Link g to in-next
­ Link out-previous to g-next

g



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

­ Cut the links between in and 
in-next, and between out 
and out-previous

­ Link in and out

⇨ Relink the edges to create the correct 
relationships

­ Find a free edge going into 
in and out's common vertex, 
call it g

­ This edge must be between out-sibling and in

­ Link g to in-next
­ Link out-previous to g-next



© Copyright Ian D. Romanick 2008

13-May-2008

Half-Edge Mesh

⇨ With these primitives, adding a new polygon is 
easy

­ For all edges, verify that the end point of one edge 
and the start point of the next edge is the same

­ For all edges, verify that the edge is not already 
associated with a polygon

­ For all edges, connect the edge to the next edge in 
the list

­ Allocate a new polygon object and connect all of the 
edges to it



© Copyright Ian D. Romanick 2008

13-May-2008

References

Matt Pharr and Ken Schoemake, ed.  comp.graphics.algorithims 
FAQ.  Accessed 13 May 2008; available from 
http://cgafaq.info/wiki/Geometric_data_structures; Internet.

http://cgafaq.info/wiki/Geometric_data_structures


© Copyright Ian D. Romanick 2008

13-May-2008

Shadow Volume Geometry

⇨ Once we have a model stored half-edge or 
winged-edge data structure, how do we generate 
the shadow volume geometry?



© Copyright Ian D. Romanick 2008

13-May-2008

Shadow Volume Geometry

⇨ Once we have a model stored half-edge or 
winged-edge data structure, how do we generate 
the shadow volume geometry?

­ For each edge in the mesh:
­ If the either of the edge's polygon pointers is NULL, skip the 

edge
­ Calculate the normal of each polygon sharing the edge, call 

these n
0
 and n

1

­ If n
0
 and n

1
 are equal, skip the edge

­ This happens if the surfaces are co-planar, and can never be on the 
silhouette

­ Emit a quad of (v
0
, n

0
), (v

1
, n

0
), (v

1
, n

1
), (v

0
, n

1
)



© Copyright Ian D. Romanick 2008

13-May-2008

Fixing Object Geometry

⇨ What about edges with NULL polygon pointers?



© Copyright Ian D. Romanick 2008

13-May-2008

Fixing Object Geometry

⇨ What about edges with NULL polygon pointers?
­ These represent holes in the model

­ The Stanford bunny model has several holes in the bottom

­ For each hole, the hole-edges form a ring



© Copyright Ian D. Romanick 2008

13-May-2008

Fixing Object Geometry

⇨ What about edges with NULL polygon pointers?
­ These represent holes in the model

­ The Stanford bunny model has several holes in the bottom

­ For each hole, the hole-edges form a ring

⇨ What can we do with this?



© Copyright Ian D. Romanick 2008

13-May-2008

Fixing Object Geometry

⇨ What about edges with NULL polygon pointers?
­ These represent holes in the model

­ The Stanford bunny model has several holes in the bottom

­ For each hole, the hole-edges form a ring

⇨ What can we do with this?
­ Walk the hole-edge ring and insert new edges 

between each pair of hole-edges
­ Each new edge will forms a triangle that fills part of 

the hole
­ Do this step before generating shadow volume 

geometry



© Copyright Ian D. Romanick 2008

13-May-2008

Next week...

⇨ Advanced shadow volume techniques:
­ Fixing z-pass and z-fail with ZP+
­ Hardware based optimizations:

­ Depth clamping
­ Depth bounds testing



© Copyright Ian D. Romanick 2008

13-May-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of IBM or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.


